Вода

Агрегатные состояния воды — важно знать

Необходимо отметить такой, важный для человека факт – при понижении атмосферного давления температура кипения падает. Это необходимо учитывать, например, в условиях высокогорья. Отметим также еще одно явление, которое полезно знать человеку в повседневной жизни — объем воды в твердом состоянии больше чем в жидком. Этот факт иллюстрирует общеизвестный пример – бутылка с водой оставленная на морозе будет разорвана, образовавшимся в ней льдом.

Очевидно, что в разных своих агрегатных состояниях Вода обладает разными базовыми физическими свойствами такими как – текучесть, твердость, летучесть.

Необходимо отметить, что пар определяет такой важный для человека и других живых организмов параметр как «влажность воздуха«. Влажность воздуха напрямую зависит от количества водяного пара в атмосфере, больше пара выше влажность. На земле существуют места как с очень высокой, так и с низкой влажностью атмосферы. Одним из самых влажных мест планеты считается индийский город Черрапунджи (Cherrapunji), а одним из самых сухих Сухие долины в Антарктике.

Вы тоже можете помочь

Вода и ее полезные свойства для живых существ

Сложно переоценить то значение, которое имеет оксид водорода для всего живого. Ведь вода и есть сам источник жизни. Известно, что без нее человек не смог бы прожить и недели. Вода, ее свойства и значение просто колоссальны.

  1. Это универсальный, то есть способный растворять и органические, и неорганические соединения, растворитель, действующий в живых системах. Именно поэтому вода — источник и среда для протекания всех каталитических биохимических преобразований, с формированием сложных жизненно важных комплексных соединений.
  2. Способность образовывать водородные связи делает данное вещество универсальным в выдерживании температур без изменения агрегатного состояния. Если бы это было не так, то при малейшем снижении градусов она превращалась бы в лед внутри живых существ, вызывая гибель клеток.
  3. Для человека вода — источник всех основных бытовых благ и нужд: приготовление пищи, стирка, уборка, принятие ванны, купание и плавание и прочее.
  4. Промышленные заводы (химические, текстильные, машиностроительные, пищевые, нефтеперерабатывающие и другие) не сумели бы осуществлять свою работу без участия оксида водорода.
  5. Издревле считалось, что вода — это источник здоровья. Она применялась и применяется сегодня как лечебное вещество.
  6. Растения используют ее как основной источник питания, за счет чего они продуцируют кислород — газ, благодаря которому существует жизнь на нашей планете.

Можно назвать еще десятки причин того, почему вода — это самое широко распространенное, важное и необходимое вещество для всех живых и искусственно созданных человеком объектов. Мы привели только самые очевидные, главные

Биологическая роль

Рекомендовано для вас

Лечение

Для чистки сосудов

Понятие о тяжелой воде

В природе оксид водорода существует в виде смеси изотопологов. Это связано с тем, что водород формирует три вида изотопа: протий 1Н, дейтерий 2Н, тритий 3Н. Кислород, в свою очередь, также не отстает и образует три устойчивые формы: 16О, 17О, 18О. Именно благодаря этому существует не просто обычная протиевая вода состава Н2О (1Н и 16О), но еще и дейтериевая, и тритиевая.

При этом устойчива по структуре и форме именно дейтериевая (2Н), которая включается в состав практически всех природных вод, но в малом количестве. Именно ее называют тяжелой. Она несколько отличается от обычной или легкой по всем показателям.

Тяжелая вода и ее свойства характеризуются несколькими пунктами.

  1. Кристаллизуется при температуре 3,82 С.
  2. Кипение наблюдается при 101,42 С.
  3. Плотность составляет 1,1059 г/см3.
  4. Как растворитель в несколько раз хуже легкой воды.
  5. Имеет химическую формулу D2O.

При проведении опытов, показывающих влияние подобной воды на живые системы, было установлено, что жить в ней способны лишь некоторые виды бактерий. Для приспособления и акклиматизации колониям потребовалось время. Но, приспособившись, они полностью восстановили все жизненно важные функции (размножение, питание). Кроме того, стали очень устойчивы к воздействию радиоактивного излучения. Опыты на лягушках и рыбах положительного результата не дали.

Современные области применения дейтерия и образованной им тяжелой воды — атомная и ядерная энергетика. Получить в лабораторных условиях такую воду можно при помощи электролиза обычной — она образуется как побочный продукт. Сам дейтерий формируется при многократных перегонках водорода в специальных устройствах. Применение его основано на способности замедлять нейтронные синтезы и протонные реакции. Именно тяжелая вода и изотопы водорода — основа для создания ядерной и водородной бомбы.

Опыты на применении дейтериевой воды людьми в небольших количествах показали, что задерживается она недолго — полный вывод наблюдается через две недели. Употреблять ее в качестве источника влаги для жизни нельзя, однако техническое значение просто огромно.

Физико-химические свойства воды

История открытия

Молекулы тяжеловодородной воды были впервые обнаружены в природной воде Гарольдом Юри в 1932 году, за что учёный был удостоен Нобелевской премии по химии в 1934 году. Уже в 1933 году Гилберт Льюис впервые выделил чистую тяжеловодородную воду. При электролизе обычной воды, содержащей наряду с обычными молекулами воды незначительное количество молекул (НDО) и ещё меньшее количество молекул тяжёлой воды (D2O), включающих в себя тяжёлый изотоп водорода, остаток постепенно обогащается молекулами этих соединений. Из такого остатка после многократного повторения электролиза Льюису удалось выделить небольшое количество воды, состоящей почти на 100 % из молекул соединения кислорода с дейтерием и получившей название тяжёлой. Этот способ производства тяжёлой воды остаётся основным и сейчас, хотя используется в основном на окончательной стадии обогащения от 5—10 % до >99 % (см. ниже).

После открытия в конце 1938 года деления ядер и осознания возможности использования цепных ядерных реакций деления, индуцированных нейтронами, возникла необходимость в замедлителе нейтронов — веществе, позволяющем эффективно замедлять нейтроны, не теряя их в реакциях захвата. Наиболее эффективно нейтроны замедляются лёгкими ядрами, и самым эффективным замедлителем должны были бы быть ядра обычного водорода (протия), однако они обладают высоким сечением захвата нейтронов. Напротив, тяжёлый водород захватывает очень мало нейтронов (сечение захвата тепловых нейтронов у протия в более чем 100 тысяч раз выше, чем у дейтерия). Технически наиболее удобным соединением дейтерия является тяжёлая вода, причём она способна также служить теплоносителем, отводя выделяющееся тепло от области, где происходит цепная реакция деления. С самых ранних времён ядерной энергетики тяжёлая вода стала важным компонентом в некоторых реакторах, как энергетических, так и предназначенных для наработки изотопов плутония для ядерного оружия. Эти так называемые тяжеловодные реакторы имеют то преимущество, что могут работать на природном (необогащённом) уране без использования графитовых замедлителей, которые на этапе вывода из эксплуатации могут представлять опасность взрыва пыли и содержат наведённую радиоактивность (углерод-14 и ряд других радионуклидов). Однако в большинстве современных реакторов используется обогащённый уран с нормальной «лёгкой водой» в качестве замедлителя, несмотря на частичную потерю замедленных нейтронов.

Производство тяжёлой воды в СССР

Промышленное производство и применение тяжёлой воды началось с развитием атомной энергетики. В СССР при организации Лаборатории № 3 АН СССР (современный ИТЭФ) перед руководителем проекта А. И. Алихановым была поставлена задача создания реактора на тяжёлой воде. Это обусловило потребность в тяжёлой воде, и техническим советом Специального комитета при СНК СССР был разработан проект Постановления СНК СССР «О строительстве полупромышленных установок по производству продукта 180», работы по созданию производительных установок тяжёлой воды в кратчайшие сроки были поручены руководителю атомного проекта Б. Л. Ванникову, народному комиссару химической промышленности М. Г. Первухину, представителю Госплана Н. А. Борисову, народному комиссару по делам строительства СССР С. З. Гинзбургу, народному комиссару машиностроения и приборостроения СССР П. И. Паршину и народному комиссару нефтяной промышленности СССР Н. К. Байбакову. Главным консультантом в вопросах тяжёлой воды стал начальник сектора Лаборатории № 2 АН СССР М. И. Корнфельд.

Химические свойства воды

После, того, как Менделеев сформулировал свой периодический закон, стало невозможным порознь рассматривать свойства простых веществ. Таблица Менделеева связала различные вещества одной общей закономерностью. Эта закономерность проявляет себя во множестве частных связей. Например, свойства водородных соединений ряда металлоидных элементов, образующих вертикальные столбцы, в таблице Менделеева, изменяются с ростом массы атома. Можно четко проследить эти изменения: прочность соединений убывает, плотность увеличивается, повышается температура кипения и плавления и т. д.

Вода — это водородное соединение кислорода. Кислород — элемент шестой группы таблицы Менделеева. В той же группе (и подгруппе) находятся сера, селен, теллур. Если сравнить свойства их соединений с водородом (гидридов), то увидим, что температура кипения понижается при переходе от теллура к сере. Сероводород кипит уже при минус 60 градусах. Значит, соединение кислорода с водородом при нормальных условиях — при нуле градусов — должно быть газом. Вода — газ! Это и было бы нормой, но, к счастью для нас, вода почему-то отклоняется от правила.

Такая странность воды не единственна. Вода необычна и в других отношениях. У нее очень велика теплота испарения, теплоемкость, водяной пар при быстром расширении конденсируется, вместо того чтобы переходить в состояние ненасыщенного пара, плотность воды увеличивается при изменении температуры от 0° до +4°С, а затем снова падает; затвердевая, вода расширяется.

Перечень странностей воды не исчерпан, но для нас достаточно и этого. Подумаем о том, что значат для жизни удивительные ее свойства. Попробуем представить себе Землю и жизнь на ней при условии, что вода — вещество «нормальное».

Нет морей и океанов, нет рек и озер, все растения и животные обезвожены, а атмосфера насыщена газом Н20.

Предположим, что ненормально высокая теплоемкость воды тоже понизилась — например, в 20—30 раз. Тогда воды океанов и морей уже не смогут накапливать достаточное количество теплоты — они станут быстро нагреваться летом и сильно охлаждаться зимой. Резкие колебания температуры вызовут растрескивание горных пород, изменят рельеф земной поверхности. Но растрескивание пород — результат расширения воды при замерзании, это ведь тоже аномалия! Допустим, что нет и ее, — горным породам от этого, конечно, будет легче, но лед начнет образовываться на дне водоемов, и они станут промерзать полностью. Следствием окажется гибель и рыбы, и всей жизни в реках и озерах.

Невеселая получается картина, не правда ли? Но и это не все. Есть у воды еще одно удивительное качество: в ней резко ослабляется сила взаимодействия между электрическими зарядами. Например, если заряженные тела перенести из воздуха в воду, эта сила упадет в 80 раз!

А результат! Какие грандиозные последствия имеет такое, казалось бы, сугубо специальное обстоятельство.

Ослабляя взаимодействие электрических зарядов, вода поддерживает растворенные в ней соли, кислоты и основания в ионизированном состоянии. А быстро протекающие химические реакции чаще всего совершаются как раз между ионами.

Вот мы и добрались до самых глубин жизни; ведь ионы — это одна из главных сил в жизненных процессах. Ионы регулируют действие множества биологических катализаторов — ферментов, без которых немыслима жизнь; перемещение ионов через биологические мембраны обуславливает передачу нервного возбуждения; концентрация ионов в почве дает возможность нормального роста растений и т. д. Вывод: вода не могла бы стать средой для жизни, если бы она не вызывала образования ионов.

Жизнь зародилась в воде; вполне естественно, что вся химия жизни неразрывно связана с маленькими молекулами Н20; все формы, все типы реакций, направление развития и формирование функций живых систем так же, как и величественные картины неживой природы, несут на себе отпечаток свойств и деятельности молекул воды!

Народная медицина и амарант

Тяжёлая вода — оксид дейтерия …

Тяжёлая вода имеет ещё одно название — оксид дейтерия.

Многие из нас слышали про существование «тяжёлой воды», но мало кто знает, почему она называется тяжелой и то, что «тяжелая вода» присутствует в небольших количествах практически во всех обычных водах.

«Тяжелая вода» действительно является «тяжелой» по отношению к обычной воде, поскольку содержит вместо «легкого водорода» 1H тяжелый изотоп 2H или дейтерий (D), вследствие чего ее удельная масса на 10% больше чем у обычной. Химическая формула тяжелой воды — D2O или 2H2O (2H2O).

Предлагаю обратиться к первоисточникам и ознакомиться с точными формулировками «тяжелой воды», данными в словарях и справочниках.

Народная медицина

Некоторые сведения

Тяжёлая вода накапливается в остатке электролита при многократном электролизе воды. На открытом воздухе тяжёлая вода быстро поглощает пары обычной воды, поэтому можно сказать, что она гигроскопична. Производство тяжёлой воды очень энергоёмко, поэтому её стоимость довольно высока. В 1935 году, сразу после открытия тяжёлой воды, её цена составляла ориентировочно 19 долларов за грамм. В настоящее время тяжёлая вода с содержанием дейтерия 99 % ат., продаваемая поставщиками химических реактивов, при покупке 1 кг сто́ит около 1 евро за грамм, однако эта цена относится к продукту с контролируемым и гарантированным качеством химического реактива; при снижении требований к качеству цена может быть на порядок ниже.

Среди населения бытует миф о том, что при длительном кипячении природной воды концентрация тяжёлой воды в ней повышается, что якобы может вредно сказаться на здоровье, из-за публикации предположения В. В. Похлёбкина в книге «Чай. Его типы, свойства, употребление», вышедшей в 1968 году. В действительности повышение концентрации тяжёлой воды при кипячении ничтожно. Академик Игорь Васильевич Петрянов-Соколов как-то подсчитал, сколько воды должно испариться из чайника, чтобы в остатке заметно повысилось содержание дейтерия. Оказалось, что для получения 1 литра воды, в которой концентрация дейтерия равна 0,15 %, то есть всего в 10 раз превышает природную, в чайник надо долить в общей сложности 2,1⋅1030 тонн воды, что в 300 млн раз превышает массу Земли. Гораздо сильнее сказывается на вкусе и свойствах воды при кипячении повышение концентрации растворённых солей, переход в раствор веществ из стенок посуды и термическое разложение органических примесей.

Nakatomi x – Красный лёд

Где применяется тяжелая вода

Довольно долго после открытия было
непонятно куда и как можно применять тяжелую воду. Несколько десятилетий
исследований все-таки привели к тому, что D20 стали использовать в промышленных и научных
целях. Список огромен, но самыми основными считают следующие сферы:

  • ядерная энергетика, медицина, оружие;
  • другие направления ядерных технологий, где необходимо торможение нейтронов;
  • наука (физика, химия, гидрология, биология);
  • детектор частиц.

Например, тяжелая вода предотвращает
размножение грибов и бактерий, что необходимо в медицине. Увеличение
концентрации дейтерия до 50% приведет к антимутагенным свойствам, а это
ускоряет половое созревание у человека и рост биологической массы.

Многолетние исследования и опыты на мышах
с раковыми опухолями привели к следующему результату. Болезнь действительно
отступала после применения жесткой воды, однако подопытный умирал. Употребление
жидкости животными приводит к разрушению органов мочеполовой системы и
нарушению обмена веществ. Если дозировка дейтерия превышает норму в несколько
раз, то организм погибает. Нередко жесткую воду называют мертвой ведь она
тормозит все биологические процессы.

Есть и положительная сторона применения тяжелой
воды. Небольшой объем (до 20-25%) увеличивает вес животных и улучшает приплод,
например, куры начинают нести больше яиц. Человек сталкивается с мертвой водой,
как минимум, несколько раз в год. Реки, моря, озера, осадки — все это содержит
определенное количество дейтерия. Удивительный факт: в дожде сверхтяжелая вода содержитсяв
более высокой концентрации, чем в снегу.

Необходимо различать и контролировать
жесткость воды, иначе не избежать последствий. Превышение концентрации приводит
к преждевременному старению (это касается не только красоты, но и всего
организма в целом) и даже развитию онкологических заболеваний. Как правило, это
касается регионов, где используются для очистки фильтры обратного осмоса или
опреснение морской воды. Иногда процент заболеваемости в таких местах превышает
показатели ближайших регионов.

Пока науке не до конца понятно, стоит ли
окончательно избавляться от дейтерия и как это вообще сделать. Не исключено,
что жидкость в скором времени будут использовать в виде нового источника
энергии. К удивлению, многих, есть не только простая и тяжелая вода. Ученые
выделяют полутяжелую и сверхтяжелую жидкости, а также различные модификации
изотопов.

Тяжелая вода была открыта почти 90 лет
назад. Все это время ученые продолжают изучать ее и искать ответы на многие
вопросы, касающиеся свойств, сферы применения и опасности жидкости. Точно можно
сказать, что она отличается от обычной несколькими характеристиками, но при
этом ее невозможно отличить по вкусу или запаху.

Поговорим о природе воды

Молекулы двигаются постоянно: даже когда вода заморожена, молекулы находятся в движении. Так что простой тест свойства воды легко показывает, что молекулы оказывают сильное влияние. Они могут принимать или передавать энергию, то есть, тепло. Причем этот процесс движется в обе стороны, как от воды к телу, так и от тела к воде. Жидкая вода предпочтительна к употреблению только при комнатной температуре. Повышение температуры желудка вредно человеку, как и излишнее охлаждение. Оба явления по своей природе понижают всасывающую способность желудка.

Можно сказать, что по своей природе молекулы воды нейтральны, но в зависимости от общей температуры влияние воды бывает как положительным, так и отрицательным. И если в живой природе часто встречаются разнообразные вещества того или иного рода, то вода – настоящая загадка.

Свойства

Влияние воды на жизнь на земле огромное. Это среда обитания
для многих организмов. Она является хорошим растворителем не только для солей,
но и для многих других веществ. Например, питательные соли присутствуют в почве
в виде ионов, то есть в растворенном виде. Только в таком виде растения могут
поглощать их через корни. Поэтому не случайно вода— это источник жизни на
земле.

Вода является важным источником химических и биохимических
реакций, например, для фотосинтеза. Это заметно, когда растение увядает из-за
потери воды, а листья и цветы опадают. Не зря говорят, что вода—это главный
источник жизни.

Физические свойства

Что мы все знаем о воде? То, что она состоит из одного атома
кислорода и двух атомов водорода, знают все, а вот о том что они притягиваются,
друг к другу водородной мостиковой связью знают не все. Эта связь объясняет ее
основные свойства.

  • Н2О имеет высокое поверхностное натяжение, то есть
    тенденцию принимать сферический объем.
  • Другим свойством является капиллярность. Молекула H2O
    способна перемещаться в очень узких пространствах.
  • Удельная теплоемкость у нее примерно в 4 раза больше,
    чем у воздуха. Это определяет устойчивость к изменениям температуры.
  • Плотность воды увеличивается с понижением температуры,
    примерно до 4 С. Ниже этого порога плотность уменьшается.
  • Она обладает минимальной вязкостью при высоких
    давлениях. Поэтому, чем больше давление, тем легче ей проникать.

Агрегатные состояния

В нормальных условиях вода, является жидкостью. Это
единственное известное вещество, которое существует в природе во всех трех
классических состояниях материи: жидком, твердом, газообразном.

Кстати, термин вода используется для жидкого агрегатного
состояния. В твердом, то есть в замороженном состоянии, она называется льдом, в
газообразном состоянии— водяным паром или просто паром. Существует порог, где
при определенных температурах и равновесного давления три состояния могут
сосуществовать одновременно.

Оптические свойства

Когда свет пересекает границу раздела вода-воздух, полное
отражение происходит под углом 49 град. Это означает, что световые лучи,
попадающие на граничную поверхность, не излучаются из воды, а отражаются.

Преломление света приводит к оптическим иллюзиям. Поэтому
под водой объекты видятся не в том месте, где они находятся на самом деле. То
же самое происходит если смотреть через воду на воздух. Светопропускная
ценность воды обеспечивает присутствие в ней водорослей и растений, которым
необходим свет для жизни. Длинноволновый (красный) свет поглощается сильнее,
чем коротковолновый (синий) свет.

Изотопные модификации

Молекулы воды состоят из разных изотопов кислорода и
водорода, каждый из которых встречается в разных концентрациях. В определенных
процессах, таких как образование осадков и фазовые переходы, происходит
фракционирование изотопов, то есть Н2О меняет свой изотопный состав. В
зависимости от условий окружающей среды и исходного состава это приводит к
определенным изотопным сигналам, которые могут выступать в качестве своего рода
отпечатка пальца для различных процессов и областей происхождения. Эта
методология используется в гидрогеологии и палеоклиматологии.

Химические свойства

Вода амфотерна, в зависимости от окружающей среды, может
действовать как кислота и основание. В водных растворах сильные кислоты и
сильные основания полностью диссоциируют на ионы H 3 O + и O H. Это называется
выравнивающим эффектом воды. Чтобы иметь возможность различать очень сильные
кислоты по кислотности, константы равновесия определяют в неводных растворах, и
переносят в растворитель воду.

Многих интересует, вода является органическим веществом или
неорганическим. С точки зрения химии, она относится к неорганическим веществам.
Поскольку, в органики должен присутствовать углерод, а в воде его нет.

Волновая функция основного состояния воды

Под водой скорость звука в 4,4 раза выше, чем у поверхности,
и составляет 1483 м /с при температуре 20 С. Поэтому пространственное
восприятие звука под водой сильно затруднено, мозг просто не успевает
обработать информацию

Важно знать, что звук под водой не только проходит
быстрее, но также в большей степени чем в воздухе зависит от частоты. Поэтому
глубокие частоты, такие как звуки больших морских двигателей, часто могут быть
услышаны драйверами на расстоянии нескольких километров

Читайте мнения экспертов

Свойства тяжёлой воды

Свойства «тяжелой воды» во многом отличаются от свойств обычной H2O:

  • «Тяжелая вода» также как и H2O обычно не имеет ни запаха, ни цвета;
  • Образование льда из тяжелой воды происходит при температуре 3,813 °C (температура плавления);
  • Закипает тяжелая вода при температуре 101,43 °C (температура кипения);
  • Вязкость тяжелой воды на 20% выше вязкости обычной воды;
  • Молекулярная масса — 20,034;
  • Растворимость — мало растворима в диэтиловом эфире, смешивается с этанолом4
  • Плотность (ρ) — 1,1042 г/см3 при температуре 25°C;
  • Давление паров — 10 мм.рт.ст при температуре 13.1°C, и 100 мм.рт.ст. при температуре 54°C;
  • Показатель преломления (σ) — 1,32844 при температуре 20°C;
  • Стандартная энтальпия образования ΔH — 294,6 кДж/моль (ж) (при 298 К);
  • Стандартная энергия Гиббса G — 243,48 кДж/моль (ж) (при 298 К);
  • Стандартная энтропия образования S — 75,9 Дж/моль•K (ж) (при 298 К);
  • Стандартная мольная теплоёмкость Cp — 84,3 Дж/моль•K (жг) (при 298 К);
  • Энтальпия плавления ΔHпл — 5,301 кДж/моль;
  • Энтальпия кипения ΔHкип — 45,4 кДж/моль;
  • Критическое давление — 31,86 Мпа;
  • Критическая плотность -0,363 г/см3.
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий